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Langevin dynamics of the Coulomb frustrated ferromagnet: A mode-coupling analysis
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We study the Langevin dynamics of the soft-spin, continuum version of the Coulomb-frustrated Ising
ferromagnet. By using the dynamical mode-coupling approximation, supplemented by reasonable approxima-
tions for describing the equilibrium static correlation function, and the somewhat improved dynamical self-
consistent screening approximation, we find that the system displays a transition from an ergodic to a noner-
godic behavior. This transition is similar to that obtained in the idealized mode-coupling theory of glass-
forming liquids and in the mean-field generalized spin glasses with one-step replica symmetry breaking. The
significance of this result and the relation to the appearance of a complex free-energy landscape are also
discussed.
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I. INTRODUCTION

Models with a competition between a short-range ord
ing interaction and a long-range frustrating interaction ha
been recently introduced to explain the slowing down of
laxation in supercooled liquids and the resulting glass tr
sition @1#. The underlying picture is as follows: any give
liquid possesses a locally preferred structure that is diffe
than that of the actual crystalline phase, and this local
rangement of the molecules in the liquid cannot propagat
long distances to tile the whole space and form an ‘‘id
crystal’’ because of ubiquitous frustration. It has been arg
@1# that, for a weak enough frustration, this phenomenon
be described by effective interactions acting on very differ
length scales: a short-range term describing the tendenc
extend the locally preferred structure and a long-ran
Coulomb-like term describing the frustration-induced fre
energy cost associated with this spatial extension. S
Coulomb-frustrated systems have been shown, both by s
ing arguments@1,2# and by Monte Carlo simulation@3#, to
display the generic features observed in fragile glass-form
liquids, most notably the super-Arrhenius temperature
pendence of the relaxation time and the two-step, nonex
nential decay of the correlation function.

These Coulomb-frustrated models have also been use
quite different contexts to describe the formation of mod
lated spatial patterns on mesoscopic length scales, suc
lamellar and cubic phases in diblock copolymer melts@4–6#,
microemulsions in water-oil-surfactant mixtures@7,8#, or
stripe phases in high-temperature superconductors@9#. In all
these cases, slow relaxation is usually observed, and it
been recently argued@10# that high-temperature superco
ductors could indeed form a ‘‘stripe glass’’ in which glass
ness is self-generated, i.e., does not result from the pres
of quenched disorder. The latter result has been obta
through an investigation of the properties of the free-ene
landscape of the Coulomb-frustratedf4 scalar field theory:
by using a thermodynamic approach combining the rep
method proposed for the study of structural glasses@11,12#
and a particular approximation, the self-consistent screen
1063-651X/2002/66~2!/026126~11!/$20.00 66 0261
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approximation~SCSA! @13#, for calculating the pair correla
tion functions, Schmalian and Wolynes@10# have derived
that the free-energy landscape of the Coulomb-frustra
model becomes nontrivial below some temperatureTA at
which an exponentially large number of metastable sta
appears; the associated configurational entropy decre
with further decrease of the temperature and vanishes
lower temperatureTK @10,14,15#.

Motivated by these results giving evidence for frag
glass-forming behavior in Coulomb-frustrated models,
have studied the Langevin dynamics of the Coulom
frustratedf4 scalar field theory within the mode-couplin
and related approximations. Mode-coupling approaches h
been widely used to study glass-forming liquids@16,17#, and
the dynamical ergodicity-breaking singularity predicted
occur in the weakly supercooled liquid regions, alb
‘‘avoided’’ in real systems, is taken by many as a canoni
feature of fragile glass-forming systems. It is therefo
tempting to investigate whether Coulomb-frustrated mod
also display this feature.

The paper is organized as follows. We first present
model and summarize the equilibrium-phase behavior
the results previously obtained by Schmalian and Wolyn
We also introduce the Langevin equation describing the
laxational dynamics of the system. In Sec. III, we derive t
evolution equations followed by the equilibrium time
dependent correlation function obtained within two resu
mation schemes of perturbative expansions: the mo
coupling approximation and the dynamical SCSA. Sect
IV is devoted to the search for an ergodicity-breaking tra
sition. We find that such a phenomenon is indeed obser
with the two approximations considered. We also show t
the dynamical singularity predicted by the dynamical SC
coincides with the temperatureTA at which the replica analy-
sis of Refs.@10,14# predicts the occurrence of an expone
tially large number of metastable states. In Sec. V, we pres
the full numerical solution of the mode-coupling equation
thereby obtaining the time-evolution of the equilibrium co
relation function; this latter is similar to that obtained in th
idealized mode-coupling theory of supercooled liquids@16#
©2002 The American Physical Society26-1
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and in mean-field generalized spin-glass models@18–20#. In
the last two sections, we address the question of sensit
of the results to the level and the details of the approxima
scheme and we give some concluding remarks.

II. MODEL

We consider the field-theoretical version of the thre
dimensional Coulomb-frustrated Ising ferromagnet defin
by the Hamiltonian

H@f#5
1

2E d3xH @¹f~x!#21r 0f2~x!1
u

2
f4~x!J

1
Q

8pE d3xE d3x8
f~x!f~x8!

ux2x8u
~1!

5
V

2E d3k

~2p!3 S r 01k21
Q

k2D f2kfk

1
uV

4 E d3k1

~2p!3E d3k2

~2p!3E d3k3

~2p!3

3fk1
fk2

fk3
f2k12k22k3

, ~2!

where f(x) is a real scalar field (fk , the associated
k-Fourier component!, V is the volume,u is a strictly posi-
tive coupling constant,Q is the frustration parameter, and a
momentum integrations are performed up to a cutoffL, i.e.,
uku<L; r 0 is a temperature-dependent mass that is prop
tional to the deviation,T2Tc,MF

0 , from the mean-field tran-
sition temperature of the unfrustrated (Q50) model.

The equilibrium partition function is

Z5E Dfe2H(f)/T. ~3!

In what follows, we takeL51, andT is set equal to 1 in Eq
~3! so that the whole temperature dependence is containe
r 0. We are interested in the weak-frustration region for wh
Q!1.

In the absence of frustration (Q50), the model defined
by Eqs.~1!–~3! reduces to the usualf4 theory. It undergoes
a second-order transition at a finite temperatureTc

0 to a
broken-symmetry phase characterized by a nonzero valu
^fkÄ0&, where ^& denotes an equilibrium average. ForQ
.0, an ordered phase witĥfkÄ0&5” 0 is forbidden, but the
system can still undergo a phase transition at a tempera
TDO(Q) to a phase with long-range modulated order. T
transition has been studied by Monte Carlo simulation for
case of the Coulomb-frustrated Ising ferromagnet on a cu
lattice @21# and via the self-consistent Hartree approximat
for a Hamiltonian similar to Eq.~1! describing microphase
separation in diblock copolymer melts@6#: it has then been
shown that, whereas the mean-field theory predicts a sec
order transition, the fluctuations change the order of the tr
sition and induce a first-order transition. Such a fluctuati
induced first-order transition was first discussed
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Brazovskii for a related model@22#. Within the self-
consistent Hartree approximation, the equilibrium~con-
nected! correlation function

VC~k!5^f2kfk&2^f2k&^fk& ~4!

is obtained via a self-consistent equation; for instance, in
paramagnetic phase where^fk&50, this equation is

C21~k!5r 01k21
Q

k2
13uE d3q

~2p!3
C~q!. ~5!

The renormalized mass,r 5r 013u*d3q/(2p)3C(q), is then
given by

r 5r 013uE d3q

~2p!3

1

r 1q21
Q

q2

. ~6!

Sincek21Q/k2 is minimum for nonzero wave vectors wit
modulus km5Q1/4, a value characterizing the incipien
modulated order, one easily checks thatr only goes to zero
when r 0→2`. This means that the paramagnetic phase
~meta!stable at all finite ‘‘temperatures,’’ its spinodal bein
depressed tor 0→2`. The Hartree approximation allow
one to calculate the free energy of the paramagnetic ph
and that of the phase with modulated order. One then obt
the temperaturer 0

DO(Q) of the first-order transition at the
point at which the two free energies are equal. The details
given in Appendix A and the resulting phase diagram
shown in Fig. 1.

In their recent work, Schmalian and Wolynes@10# have
applied the thermodynamic approach of nonrandom gla
forming systems developed by Me´zard and Parisi@12# to the
Coulomb-frustrated model. The basic idea, originally mo

FIG. 1. Temperature (r 0)-frustration (Q1/4) equilibrium phase
diagram in the self-consistent Hartree approximation. The full l
denotes the fluctuation-induced first-order transition to modula
phases; below this line, the paramagnetic phase exists in a m
stable state. The coupling constantu is set equal to 1.
6-2
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vated by the behavior of a class of mean-field generali
spin glasses such asp-spin and Potts glasses@18,19#, is that
glassiness arises because of the occurrence of an expo
tially large number of metastable states. This occurrence,
the associated emergence of a nonzero complexity or
figurational entropy, can be more conveniently studied wit
the replica formalism@11#. Approximations are of course
necessary to solve the corresponding many-body prob
and obtain all relevant correlation functions. Schmalian a
Wolynes have shown that within the SCSA@13#, an approxi-
mation that goes beyond the Hartree result in that it exp
itly includes more diagrams of the perturbative expans
@23#, there is a temperatureTA at which an exponentially
large number of metastable states emerges, as signaled
nonzero configurational entropy. The configurational entro
decreases with further decay of the temperature and it v
ishes at a temperatureTK at which the system undergoes
random first-order transition to an ‘‘ideal glass’’@10#.

In the present work, we focus on the dynamics of t
Coulomb-frustrated model defined by Eq.~1!. The starting
point is the Langevin equation

]fk~ t !

]t
52

d$H@fk~ t !#/V%

df2k~ t !
1hk~ t ! ~7!

that describes the purely relaxational dynamics of the s
tem; hk(t) is a gaussian thermal noise with^hk(t)&50 and
^hk(t)hk8(t8)&52Td(k1k8)d(t2t8). Equation~7! can be
explicitly written as

]fk~ t !

]t
52S r 01k21

Q

k2D fk2uE d3k1

~2p!3E d3k2

~2p!3

3fk1
fk2

fk2k12k2
1hk~ t !. ~8!

Solving this set of coupled nonlinear dynamical equatio
is a daunting task, and virtually all available approximatio
amount to performing some self-consistent resummation
perturbative expansions, e.g., expansions in powers of
coupling constantu or of the inverse of the number of com
ponents of the field, 1/n, for an O(n) model. In what fol-
lows, we shall consider two such self-consistent resum
tion schemes, the mode-coupling approximation and
dynamical SCSA@24#.

III. DYNAMICAL SELF-CONSISTENT APPROXIMATIONS

To introduce the mode-coupling approximation, we fi
define the time-dependent correlation functionC(k,t,t8) and
the associated response functionG(k,t,t8):

d~k1k8!C~k,t,t8!5^fk~ t !fk8~ t8!&, ~9!

d~k1k8!G~k,t,t8!5K ]fk~ t !

]hk8~ t8!
L 5

1

2T
^fk~ t !hk8~ t8!&.

~10!

As in the preceding section, we setT51 in the following.
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The perturbative expansion ofC(k,t,t8) andG(k,t,t8) in
powers ofu is more conveniently expressed by introduci
the zeroth-order correlation and response functions,

C0~k,t,t8!5
1

m~k!
exp@m~k!~ t2t8!#, ~11!

G0~k,t,t8!5exp@m~k!~ t2t8!#, ~12!

where

m~k!5r 01k21
Q

k2
, ~13!

and the two kernelsS(k,t,t8) andD(k,t,t8) defined through
the standard Dyson equations,

C~k,t,t8!5E
0

t

dt1E
0

t8
dt2G~k,t,t1!@2d~ t12t2!

1D~k,t1 ,t2!#G~k,t8,t2!, ~14!

G~k,t,t8!5G0~k,t,t8!1E
t8

t

dt1E
t8

t1
dt2G0~k,t,t1!

3S~k,t1 ,t2!G~k,t2 ,t8!. ~15!

The diagrammatic representation of the perturbative
pansion and a detailed derivation of the mode-coupling
proximation can be found in Ref.@19#; the only difference
with the cases considered in Ref.@19# is the presence of the
frustration termQ/k2 in the expression ofm(k), and we
merely sketch here the main steps of the derivation.

The mode-coupling approximation amounts to expand
the kernelsD(k,t,t8) andS(k,t,t8) to second order inu and
replacing the bare~zeroth-order! functions C0(k,t,t8) and
G0(k,t,t8) that appear in the resulting expressions by th
renormalized counterpartsC(k,t,t8) and G(k,t,t8). This
leads to@19#

D~k,t,t8!.6u2E d3k1

~2p!3E d3k2

~2p!3
C~k1 ,t,t8!

3C~k2 ,t,t8!C~k2k12k2 ,t,t8!, ~16!

S~k,t,t8!.18u2E d3k1

~2p!3E d3k2

~2p!3
C~k1 ,t,t8!

3C~k2 ,t,t8!G~k2k12k2 ,t,t8!. ~17!

At the same timem(k) is renormalized to include the
so-called tadpole diagrams, which replaces Eq.~13! by an
expression similar to that obtained within the static Hart
approximation.

In this work, we are interested by the dynamical prop
ties of the systemat equilibrium: therefore, the fluctuation-
dissipation theorem and the time-translation invariance
ply, which reduces the dependence upon the two timest and
t8 to the mere dependence on the differencet2t8 and gives
6-3
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G~k,t !52Q~ t !
]C~k,t !

]t
~18!

and

S~k,t !52Q~ t !
]D~k,t !

]t
, ~19!

whereQ(t) is the Heaviside step function@Q(t) is equal to
0 for t,0 and to 1 pourt.0]. Applying the operator
G0

21(k)5@m(k)1]/]t# to both sides of Eq.~15! yields

]G~k,t !

]t
5d~ t !2m~k!G~k,t !1E

0

t

dt8S~k,t2t8!G~k,t8!,

~20!

which, when combined with the time derivative of Eq.~18!,

]G~k,t !

]t
52d~ t !S ]C~k,t !

]t D
t50

2Q~ t !
]2C~k,t !

]t2
, ~21!

gives

S ]C~k,t !

]t D
t50

521. ~22!

For t.0, the equation for the response function thus rea

]G~k,t !

]t
52m~k!G~k,t !1E

0

t

dt8S~k,t2t8!G~k,t8!

~23!

with the initial conditionG(k,t501)51. By Laplace trans-
forming Eqs.~18!, ~19!, and~23! and using the initial condi-
tion (]C(k,t)/]t) t5052G(k,t501)521, one finally ob-
tains

15@zĈ~k,z!1C~k,t50!#@m~k!2 iz

2zD̂~k,z!2D~k,t50!#, ~24!

where Ĉ(k,z)5 i *0
`dteiztC(k,t), and a similar expression

holds for D̂(k,z). Going back to the time dependence lea
to

]C~k,t !

]t
52@m~k!2D~k,t50!#C~k,t !

2E
0

t

dt8D~k,t2t8!
]C~k,t8!

]t8
~25!

with the initial condition C(k,t50)5@m(k)2D(k,t
50)#21 that follows from Eqs.~22! and ~25!.

The mode-coupling approximation finally results in t
following self-consistent equation for the time-depend
correlation function at equilibrium:
02612
s

t

]C~k,t !

]t
52C~k,t50!21C~k,t !

2E
0

t

dt8D~k,t2t8!
]C~k,t8!

]t8
~26!

with

D~k,t !56u2E d3k1

~2p!3E d3k2

~2p!3
C~k1 ,t !

3C~k2 ,t !C~k2k12k2 ,t !. ~27!

Except for the absence of the inertial term,]2C(k,t)/]t2,
in the purely relaxational dynamics associated with
Langevin equation and the cubic dependence of the mem
kernelD(k,t) on the correlation functionC(k,t), the above
equations are similar to the mode-coupling equations use
describe the time-dependent density fluctuations in su
cooled liquids@16#; they are also analogous to those deriv
for the mean-field spin glass with four-spin interactio
@19,20#.

The necessary input for solving the self-consistent E
~26! and~27! is the knowledge of the equilibrium static co
relation functionC(k,t50). Treating the statics and the dy
namics of the system on an equal footing, as for insta
done in the above derivation, leads to considering a mo
coupling approximation for the static correlation functio
C(k,t50)5@m(k)2D(k,t50)#21. However, we shall
rather introduce more flexibility in the mode-couplin
scheme~a flexibility that goes with the many ways to imple
ment the self-consistency at the second order of the pe
bative expansion! by allowing C(k,t50) to be computed
with several approximations, such as the Hartree approxi
tion and the SCSA, that area priori better behaved than th
mode-coupling approximation as far as the static proper
are concerned.

A somewhat refined resummation scheme is provided
the dynamical SCSA.~As mentioned in Ref.@23#, it consists
in using ann-component vector fieldf, resumming self-
consistently all the diagrams of order 1/n in the largen ex-
pansion, and, eventually, for the problem considered h
settingn equal to 1.! Details on the derivation of the approx
mate equation for the time-dependent correlation funct
C(k,t) can be found in Refs.@19,25#. A convenient way to
proceed is to introduce a complex auxiliary fields(x) such
that the partition function, Eq.~3!, can be rewritten asZ
5**DfDse2H[f,s] ~hereT51) with

H@f,s#5
1

2E d3x$@¹f~x!#21r 0f2~x!2s2~x!

1A2us~x!f2~x!%

1
Q

8pE d3xE d3x8
f~x!f~x8!

ux2x8u
. ~28!
6-4
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The field s(x) is such that^s(x)&5Au/2^f2(x)& and its
connected pair correlation function Cs(x,x8)
5^s(x)s(x8)&c is equal to

Cs~x,x8!52d~x2x8!1u/2@^f2~x!f2~x8!&

2^f2~x!&^f2~x8!&#. ~29!

One can then apply to the dynamics of the coupled fie
s(x) and f(x) a treatment similar to that sketched abov
Defining the equilibrium time-dependent correlation functi
Cs(k,t) via d(k1k8)Cs(k,t)5^sk(t)sk8(0)&c , the associ-
ated kernelDs(k,t) obtained through the Dyson equatio
~see above!, and similar functions for the response prop
ties, one can perform a mode-coupling approximation to
coupled dynamical equations for the fieldss(x) and f(x).
This leads to Eq.~26! with D(k,t) now given by@25#

D~k,t !52uE d3p

~2p!3
Cs~p,t !C~k2p,t !; ~30!

the auxiliary-field correlation functionCs(k,t) is the solu-
tion of the equation

]Cs~k,t !

]t
5Cs~k,t50!21Cs~k,t !

2E
0

t

dt8Ds~k,t2t8!
]Cs~k,t8!

]t8
~31!

with

Ds~k,t !52uE d3q

~2p!3
C~q,t !C~k2q,t !. ~32!

These equations are supplemented by the initial condit
C(k,t50)5@m(k)2D(k,t50)#21 and Cs(k,t50)52@1
2Ds(k,t50)#21 which are easily shown to be identical
the equilibrium, static SCSA equations first derived by Br
@13#.

IV. TRANSITION FROM ERGODIC
TO NONERGODIC BEHAVIOR

It is well known that mode-coupling and related appro
mations, when applied to glass-forming systems, may lea
a dynamical singularity@16,19#. The latter corresponds to
transition from an ergodic to a nonergodic behavior and
not associated with any thermodynamic equilibrium tran
tion. For searching for such a singularity in the above eq
tions, it is convenient to Laplace transform Eq.~26!, which
gives

Ĉ~k,z!5
2C~k,t50!

z2
1

C~k,t50!~ i 1D̂~k,z!!

. ~33!

An ergodicity-breaking transition is associated with the a
pearance of a nonzero value of the long-time limit of t
02612
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correlation function,C(k,t→`); as a result, in the small-z

limit, Ĉ(k,z);2C(k,t→`)/z and D̂(k,z);2D(k,t
→`)/z, which when inserted into Eq.~33! leads to

D~k,t→`!5
C~k,t→`!

C~k,t50!„C~k,t50!2C~k,t→`!…
.

~34!

The kernelD(k,t→`) is obtained from Eq.~27! for the
mode-coupling approximation and from Eqs.~30!–~32! for
the dynamical SCSA.

Consider first the equation resulting from the mod
coupling approximation,

C~k,t→`!

C~k,t50!2C~k,t→`!

56u2C~k,t50!E d3k1

~2p!3E d3k2

~2p!3
C~k1 ,t→`!

3C~k2 ,t→`!C~k2k12k2 ,t→`!. ~35!

Note that this actually represents a set of coupled eq
tions for the variousk modes. The necessary input for sol
ing this equation is the knowledge of the equilibrium sta
correlation functionC(k,t50) ~see discussion above!. We
consider here two standard approximations:~i! the Hartree
approximation, already presented in Eqs.~5! and~6!, and~ii !
the SCSA, described in the previous section and leading

C21~k,0!5m~k!12uE d3q

~2p!3

C~k2q,0!

11uP~q!
, ~36!

where

m~k!5r 01k21
Q

k2
1uE d3q

~2p!3
C~q,0! ~37!

and

P~k!5E d3q

~2p!3
C~q,0!C~k2q,0!. ~38!

Note that if one neglects the termuP(q) in Eq. ~36!, one
recovers the Hartree approximation.

In both cases, only the paramagnetic phase^fk&50, is
considered. From now on, we takeu51 ~recall that all mo-
mentum integrations are cut off atL51).

Other approximations will be discussed in Sec. VI.
We have solved the set of coupled equations, Eq.~35!, by

an iterative method. We find that with the above two appro
mations, the mode-coupling approach does lead to
ergodicity-breaking transition for the Coulomb-frustrat
model. When decreasing the temperature, i.e., the bare m
r 0, one reaches a point at whichC(k,t→`) discontinuously
jumps to a nonzero value. The transition temperature
creases as frustration decreases; it seems to reach con
ously, whenQ→0, the~equilibrium! critical temperature of
6-5
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the unfrustrated system, i.e., of the standardf4 theory in
either the Hartree approximation or the SCSA. This behav
is illustrated in Fig. 2. One observes a discrepancy betw
the results obtained with the two different approximations~i!
and~ii ! for C(k,t50), but it stays within reasonable bound
the relative difference is about 20% or less. As can be s
from Fig. 3, the two approximations predict very similar co
relation functions, both at equilibrium (t50) and in the non-
ergodic state (t→`) when the temperature is at~or just be-
low! the dynamical transition. Roughly speaking, the lat
takes place when the maximum of the equilibrium corre
tion function C(k,t50), a maximum that occurs foruku
.km5Q1/4, reaches a given,Q-dependent value: this is il
lustrated forQ50.1 in Fig. 4 where the dynamical transitio
occurs when maxk$C(k,0)%.40. As the maximum increase
whenQ decreases slightly more rapidly with the SCSA th
with the Hartree approximation, the former predicts a som
what higher transition temperature than the latter: see Fig
Note that the fact that the ergodicity-breaking transition
driven by the maximum of thek-dependent equilibrium cor
relation function is well established in the context of mod
coupling approaches@16#. As illustrated in Fig. 5, the transi
tion takes place at the same temperature for allk modes.

The transition from ergodic to nonerogodic dynamical b
havior can also be studied within the dynamical SCSA. T
corresponding equations to be solved are given above an
Appendix B. A dynamical transition is indeed found, and t
frustration dependence of the transition temperature is sh
in Fig. 2. The predicted transition line is not much differe
from those obtained with the above mode-coupling appro
mations. We show in Appendix B that the expressions for
correlation functionC(k,t) for t50 and t→` derived
within the dynamical SCSA when ergodicity is broken a
identical to those obtained in Refs.@10,14# by using the
purely thermodynamic analysis based on the replica form
ism and the static SCSA. As a result, the dynamical SC
predicts that the dynamics loses ergodicity precisely at
point at which an exponentially large number of metasta

FIG. 2. Ergodicity-breaking transition in ther 0-(Q1/4) diagram.
Dotted line: mode-coupling approximation with the static Hartr
approximation; dashed line: mode-coupling approximation with
static SCSA; full line: dynamical SCSA.
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states occur in the Schmalian-Wolynes treatment. Below
temperature, ergodicity is broken: the fluctuation-dissipat
theorem and the time-translation invariance no longer ap
and Eqs.~26!–~30! should be generalized to describe t
evolution of two-time correlation and response functions a
the associated aging behavior@19#.

Finally, it is instructive to compare the location of th
mode-coupling-like dynamical transition with that of th
equilibrium, thermodynamic transition discussed in Sec.
The dynamical transition occurs at a temperature tha
lower than the critical temperature of the unfrustrated s
tem, a temperature that was shown in the Monte Carlo st
of Ref. @3# to mark the onset of fragile glass-forming beha
ior; it seems to occur at a temperature close to that of
fluctuation-induced first-order transition from the parama
netic to the modulated phases. This is illustrated in Fig
where we display the first-order transition obtained with
the Hartree approximation~see Sec. II and Fig. 1! and the

e

FIG. 3. Correlation functionC(k,t) at t50 ~full line! and in the
t→` limit ~dashed line! in the dynamical mode-coupling approx
mation just below the ergodicity-breaking transition for two diffe
ent values of the frustrationQ: ~a! static Hartree approximation;~b!
static SCSA.
6-6
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dynamical transition obtained within the mode-coupling a
proximation supplemented by the static Hartree approxim
tion ~as discussed above, the other predictions are quite c
to this latter!.

Actually at small Q’s the dynamical transition appea
even below the temperature of the equilibrium first-ord
transition: in such a case, the dynamical transition ta

FIG. 4. Maximum of the static correlation functio
maxk$C(k,t)% versus temperature (r 0) for t50 ~full line! and t
→` ~dashed line! in the dynamic mode-coupling approximation fo
a frustrationQ50.1. The left curves correspond to the static H
tree approximation and the right curves to the static SCSA.
jump in maxk$C(k,t→`)% signals the transition from an ergod
~high temperature! to a nonergodic~low temperature! behavior. The
inset shows the normalized nonergodicity factor maxk$C(k,t
→`)%/maxk$C(k,t50)% versusr 0.

FIG. 5. Correlation functionC(k,t5`) versus temperature (r 0)
for Q50.1 and three different momentak corresponding to the
maximum of the function (kmax, full line!, a higher value (kmax

10.05, dashed line! and a lower value (kmax20.05, dotted line!.
The results are obtained for the dynamical mode-coupling appr
mation supplemented by the static SCSA. Note that the jumps o
at the same temperature.
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place in thesupercooledparamagnetic~‘‘liquid’’ ! regime, a
regime that appears because of the first-order nature of
transition to the modulated phases and that can be desc
by the Hartree approximation. As discussed in Sec. II,
paramagnetic phase is~meta!-stable at all finite temperature
within this approximation, and the equilibrium correlatio
length is therefore finite in all of the region where the d
namics are studied.

V. EVOLUTION WITH TIME OF THE
CORRELATION FUNCTION

We have also solved the full set of coupled equatio
describing the time evolution of the equilibrium correlatio
function C(k,t) in the mode-coupling approximation, Eq
~26!–~27!. ~The algorithm is described in Refs.@26,27#.! For
the input quantity,C(k,t50), we have used the Hartree a
proximation. The results are shown in Fig. 7 for the tim
dependent correlation function at a momentumkmax.km
5Q1/4 that corresponds to the maximum value of the fun
tion; curves for the frustration parameterQ50.1 and several
temperatures~i.e., several values of the bare massr 0) are
shown. One observes a behavior typical of the mo
coupling equations with a so-calledB-type transition@16# as
those used to describe glass-forming liquids@16# and those
describing the dynamics of a class of mean-field generali
spin glasses@19#.

At high temperature, the correlation function decays
one step, but as temperature is lowered a second relaxa
step appears, that becomes slower and slower so that a
teau develops between the two relaxation steps. When t
perature is further decreased, one reaches a point at w
the slow ~‘‘ a ’’ ! relaxation time diverges. The correlatio
function no longer decays to zero, but stays at the plat
value. Below this point, ergodicity is broken and the mod
coupling equations derived under the condition of equil

-
e

i-
ur

FIG. 6. Ergodicity-breaking transition~dynamical mode-
coupling approximation with static Hartree approximation!, full
curve, and fluctuation-induced first-order transition~static Hartree
approximation!, dashed curve, in ther 02Q1/4 diagram.
6-7
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M. GROUSSON, V. KRAKOVIACK, G. TARJUS, AND P. VIOT PHYSICAL REVIEW E66, 026126 ~2002!
rium ~with the fluctuation-dissipation theorem and the tim
translation invariance! are no longer valid.

In the vicinity of the dynamical transition, various scalin
laws are observed, and the slow~‘‘ a ’’ ! relaxation time di-
verges as a power law,

ta~Q,T!;~T2Tc!
2g, ~39!

where the exponentg.1.85–1.89 is weakly dependent o
the frustration parameter, providedQ.0. ~For Q50, the
system shows standard critical slowing down witht(T)
;(T2Tc)

2zn, wherez is the dynamical exponent andn the
~static! correlation length exponent@28#.! For illustration, we
have plotted the logarithm of thea-relaxation time versus
temperaturer 0 for two different frustrations in Fig. 8.

VI. SENSITIVITY OF THE RESULTS TO THE
APPROXIMATION SCHEME

We have already mentioned~see Ref.@24#! that enough of
the nonlinearities of the original dynamical equation or of t
equations in replica space must be kept in any approxim
treatment in order to find nontrivial phenomena such as
godicity breaking and the appearance of an exponenti
large number of metastable states. For this reason, the
namical as well as the replica-space Hartree approximat
are unable to generate such phenomena. One must ther
consider improved resummation schemes such as the m
coupling approximation and the SCSA@29#.

The additional point we would like to make here is th
even in the mode-coupling approximation, the results
somewhat dependent upon the supplementary approxima
that is made to describe the static properties of the sys
entering as an input in the dynamical equation. It is w

FIG. 7. Time dependence of the correlation functionC(kmax,t)
for Q50.1 as predicted by the mode-coupling approximat
~supplemented by the static Hartree approximation!. Curves from
left to right correspond to decreasing temperatures:r 0521.05,
21.06,21.065,21.068,21.070,21.071,21.071 35,21.071 55,
21.071 65,21.0717,21.071 73,21.071 734,21.071 737 9, and
21.071 738. The dynamical transition is atr 0.21.071 737 9 . . . .
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known, and was recalled above, that the location, or even
existence of an ergodicity-breaking transition is sensitive
the amplitude of the peak in the equilibrium~static! correla-
tion functionC(k,t50). We have seen that the Hartree a
SCSA give slightly different, but compatible, results. If on
uses instead a somewhat less renormalized version of
SCSA with m(k) in Eq. ~37! now defined with the Hartree
and not the full correlation function, i.e.,

m~k!5r 01k21
Q

k2
1uE d3q

~2p!3

1

m~q!
, ~40!

a different behavior is obtained. As shown in Fig. 9, t
maximum of the static correlation function appears to sa

FIG. 8. Temperature dependence of thea-relaxation timeta

obtained from the dynamical mode-coupling prediction~with the
static Hartree approximation! for the time-dependent correlatio
function C(kmax,t). ta is defined as the time at whichC(kmax,t)
50.1. Two frustrations,Q50.1 and Q50.001, are shown.~a!
log10(ta) versus2r 0; the left and right curves correspond toQ
50.1 and Q50.001, respectively.~b! log10(ta) versus log10@r 0

2r 0c(Q)#, wherer 0c(Q) is the ergodicity-breaking transition poin
6-8



t

e

c

o
o

th
th
tin

an

in
o
a

in
ca
th
t

ed

lica

able
lly

atic
gets
r by
ed
to

ean-
tely
e
., in
hat
the
o-
phe-

ui-
and
lf-
be-

al

ria-
a-

tra
a

ion
ds

LANGEVIN DYNAMICS OF THE COULOMB FRUSTRATED . . . PHYSICAL REVIEW E 66, 026126 ~2002!
rate, as one lowers the temperature, to a value that is
small to trigger a breaking of ergodicity.

Finally, considering the static analog of the mod
coupling approximation to computeC(k,t50) @see Eq.~25!
and below#, i.e.,

C21~k,t50!5r 01k21
Q

k2
13uE d3q

~2p!3
C~q,t50!

2D~k,t50!, ~41!

whereD(k,t50) is given by Eq.~27! leads to a situation in
which the limit of stability ~spinodal! of the paramagnetic
phase is reached at a finite temperature, before the oc
rence of an ergodicity-breaking transition.

The validity of these various approximations should
course be checked by performing a computer simulation
the model. However, one can tentatively conclude from
above exercise that despite the formal similarity between
dynamics and the statics that comes from using the Mar
Siggia-Rose functional formalism@30#, different levels of ap-
proximation may be required to describe the dynamical
the static properties of the Coulomb-frustrated model.

VII. CONCLUSION

We have studied the Langevin dynamics of the soft-sp
continuum version of the Coulomb-frustrated Ising ferr
magnet. By using the dynamical mode-coupling approxim
tion, coupled with reasonable approximations for describ
the equilibrium static correlation function, and the dynami
self-consistent screening approximation, we have found
the system’s dynamics display a transition from ergodic

FIG. 9. Maximum of the correlation functionC(kmax,t) versus
temperature (r 0) for t50 ~full lines! andt→` ~dashed line! in the
dynamical mode-coupling approximation. The value of the frus
tion is Q50.1. The two upper curves correspond to the static H
tree approximation that predicts an ergodicity-breaking transit
The lower curve that saturates at low temperatures correspon
the less renormalized version of the SCSA@Eq. ~40!#: no dynamical
transition is observed in this case.
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nonergodic behavior, similar to that obtained in the idealiz
mode-coupling theory of glass-forming liquids@16# and in
the mean-field generalized spin-glasses with one-step rep
symmetry breaking@18,19#. This transition occurs in the
paramagnetic phase, either in the stable or the metast
region. It is related to the emergence of an exponentia
large number of metastable states found by a purely st
replica approach: the system loses ergodicity because it
trapped in free-energy minima separated from each othe
infinite barriers. This whole description, as can be inferr
from the very nature of the approximations that amount
partial resummations of perturbative expansions, has a m
field character: thermally activated processes are comple
ignored. The predicted singularity is ‘‘avoided’’ in the tru
dynamics of the system and it remains to be seen, e.g
computer simulations of Coulomb-frustrated models, w
signatures may still be observed in the time evolution of
correlation function. As for describing the activated pr
cesses, other, nonperturbative approaches, such as the
nomenological frustration-limited domain@1# and entropic-
droplet pictures@31#, must be used.

APPENDIX A: FLUCTUATION-INDUCED
FIRST-ORDER TRANSITION

In this appendix, we calculate the temperature of the eq
librium transition between the paramagnetic phase
phases with spatially modulated order within the se
consistent Hartree approximation. The derivation given
low closely follows Brazovskii’s original treatment@22#.

The starting point is the Hamiltonian in Eq.~2! aug-
mented by the introduction of spatially varying extern
fieldshk that are linearly coupled to the scalar fieldfk . As a
result, fk is now the sum of an average component,mk
5^fk&, and a fluctuationck5fk2mk . The self-consistent
Hartree approximation is then equivalent to a gaussian va
tional approximation for the fluctuations. The resulting equ
tion of state reads

hk5S r 01k21
Q

k2D mk1uE d3k1

~2p!3E d3k2

~2p!3

3@mk1
mk2

13C~k1 ,k2!#mkÀk12k2
, ~A1!

where the connected correlation functionC(k,k8)
5^ckck8& is obtained self-consistently by solving

C21~k,k8!5S r 01k21
Q

k2D d~k1k8!

13uE d3q

~2p!3
@mqmk¿k8Àq1C~q,k1k82q!#

~A2!

together with the inversion formula

E d3q

~2p!3
C21~k,q!C~q,k8!5d~k82k!. ~A3!

-
r-
.
to
6-9
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In the paramagnetic phase when allhk’s, and thereforemk’s,
are equal to zero, Eqs.~A2! and~A3! reduce to Eq.~5! with
C(k,k8)5C(k)d(k1k8).

In the vicinity of the transition between paramagnetic a
modulated phases and for small enough frustrationQ(Q
!1), the modulated order is one-dimensional and charac
ized by a wave vectorkm with ukmu5km5Q1/4. It is then
sufficient to consider

hk5h̃„d~k2km!1d~k1km!… ~A4!

and

mk5m̃„d~k2km!1d~k1km!…. ~A5!

In this region, the fluctuations of wave vectork with uku
5km are dominant, and Brazovskii@22# has shown that the
effect of the off-diagonal terms withk5” k8 could be ne-
glected in the correlation function. As a result,

C~k,k8!.
d~k1k8!

r 1k21
Q

k2

, ~A6!

where the renormalized mass in a phase characterize
Eqs.~A4!,~A5!, is given by

r 5r 013uE d3k

~2p!3 S 1

r 1k21
Q

k2

1umku2D
5r 013uE d3k

~2p!3

1

r 1k21
Q

k2

16uum̃u2. ~A7!

By introducing Eqs.~A4!–~A7! in Eq. ~A1! and recalling
that km5Q1/4, one obtains the following equation of state

h̃5S r 012Q1/213uE d3k

~2p!3

1

r 1k21
Q

k2

13uum̃u2D m̃

5~r 12Q1/223uum̃u2!m̃. ~A8!

In the Hartree approximation, and below some temperat
there is a coexistence of the paramagnetic phase and
modulated phase. In zero field (h̃50), the former is charac
terized by m̃50 and the latter bym̃5” 0, wherem̃ is the
solution of (r 12Q1/223uum̃u2)50. The transition point,
which is then associated with a first-order transition, is o
tained as the temperature at which the free-energies of
two phases are equal. Following Brazovskii@22#, it is con-
venient to calculate directly the free-energy differen
02612
d

r-

by

e,
the

-
he

DF(r 0) between the modulated (m̃5” 0) and the paramag
netic (m̃50) phases at a given temperaturer 0 from the fol-
lowing expression:

DF5E
0

m̃
dm̃8

]F

]m̃8
52E

0

m̃
dm̃8h̃~m̃8!, ~A9!

whereh̃m̃8 is given by Eq.~A8!. One can change the integra
tion variable fromm̃8 to r 8 with r 8(m̃8) solution of Eq.
~A7!. After some algebra, Eq.~A9! can be recast as

uDF5E
r (m̃50)

r (m̃)
dr̃8S r 81r 0

2
12Q1/21

3u

4p2E dk
k2

r 1k21
Q

k2
D

3S 1

6
1

u

4p2E dk
k2

S r 81k21
Q

k2D 2D , ~A10!

wherer (m̃50) is the solution of Eq.~A7! with m̃50, i.e., of
Eq. ~6!, and r (m̃) and m̃ are solutions of the two couple
equations, Eq.~A7! and (r 12Q1/223uum̃u2)50. By solving
Eq. ~A10! numerically for several values ofQ!1 ~and for
u51), we have found that the sign ofDF changes at a finite
value ofr 0 that marks the first order transition between pa
magnetic and modulated phases. The result is shown in
1. The transition being second-order in the mean-field
proximation, it is then driven first order by the fluctuation

APPENDIX B: ERGODICITY BREAKING IN THE
DYNAMICAL SCSA

One can see from Eqs.~30!–~32! that ergodicity breaking
requires that bothC(k,t) andCs(k,t), and as a consequenc
D(k,t) and Ds(k,t), go to nonzero values in the limitt
→`. From Eq.~34! one obtains

C~k,t→`!5
D~k,t→`!C~k,0!2

11D~k,t→`!C~k,0!
. ~B1!

A similar expression can be derived forCs(k,t→`) by first
Laplace transforming Eq.~31!,

Ĉs~k,z!5
2Cs~k,0!

z2
1

Cs~k,0!~ i 1D̂s~k,z!!

, ~B2!

and by looking for the dominant behavior in the smallz

limit, Ĉs(k,z);2Cs(k,t→`)/z, D̂s(k,z);2Ds(k,t
→`)/z; one finally gets

Cs~k,t→`!5
2Ds~k,t→`!Cs~k,0!2

12Ds~k,t→`!Cs~k,0!
. ~B3!

By introducing the time-dependent polarization
6-10
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P~k,t !5E d3q

~2p!3
C~q,t !C~kÀq,t !, ~B4!

one can express the memory kernelDs(k,t) given in Eq.
~32! as

Ds~k,t !52uP~k,t !, ~B5!

so that thet50 and t→` values ofCs(k,t) @given below
Eq. ~32! and in Eq.~B3!, respectively# can be written as

Cs~k,0!5
21

11uP~k,0!
, ~B6!
.
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.
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v
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02612
Cs~k,t→`!5
2uP~k,t→`!Cs~k,0!2

11uP~k,t→`!Cs~k,0!
. ~B7!

Recalling that C(k,0)5@m(k)2D(k,0)#21 with m(k)
5r 01k21Q/k21u*d3q/(2p)3C(q,0), and thatD(k,t) is
given by Eq.~27!, one obtains with Eqs.~B1!, ~B5!, and~B6!
a closed set of equations that determines the nonergod
parameterC(k,t→`). If one changes the notations from
C(k,0) andC(k,t→`) to G(k) and F(k), from 2D(k,0)
and2D(k,t→`) to S(k) andSs(k), from 2uC(k,0) and
2uCs(k,t→`) to DG(k) andDF(k), one can easily check
that the above equations are identical to those obtaine
Refs. @10,14# with the replica formalism and the stati
SCSA.
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